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Abstract 
 

Feed-forward neural networks (FFNN) executing back propagation are a common 

tool for regression and pattern recognition problems.   These types of neural networks can 

adjust themselves to data without any prior knowledge of the input data.  FFNNs with a 

hidden layer can approximate any function with arbitrary accuracy.    

In this research, the upper layer weights of neural networks are used to determine 

an effective middle layer structure and when to terminate training.  By combining these 

two techniques with signal-to-noise ratio feature selection, a process is created to 

construct an efficient neural network structure.  The results of this research show that for 

data sets tested thus far, these methods yield efficient neural network structure in minimal 

training time.  Data sets used include an XOR data set, Fisher’s iris data set, and a 

financial industry data set, among others. 



v 

AFIT-OR-MS-ENS-11-06 
 

Dedication 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to all those who have been a part of my education 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi 

Acknowledgments 
 

There are many people I would like to acknowledge for allowing me to 

successfully complete this research.  First, I would like to express my gratitude to my 

advisor, Dr. Kenneth Bauer, for guiding me through the research process and sharing 

some of his vast knowledge with me along the way.  Without him, this effort would not 

have come together.  I would also like to thank my reader, Dr. John Miller, for his 

feedback and support.   

Next, I would like to give a special thanks to Capt Jason Williams for being an 

honorary member of my committee and for answering all my questions during the 

research process.  He and Capt Ben Hartlage taught me that sometimes the answers to 

life’s most difficult questions are efficiently stacked inside the Joe Price memorial fridge. 

Further, I thank my family and my previous educators who have brought me to 

this point in my academic career.  My parents always pushed me to pursue further 

education and provided me reassurance when I doubted what I was doing along the way.  

For this reason, I believe the accomplishment of this thesis was not started at AFIT, but at 

a very young age.  

Also, I would like to thank Lt Col Brian Ralston, my USAFA academic advisor, 

for pushing me to pursue my Master’s degree as soon as possible.   

There are surely others who I have failed to mention, but know that I am grateful 

to everyone who has been a positive influence on my life throughout this process.  You 

make it all worth it.       

       -Harmon J.A. Gage 



vii 

Table of Contents 
Page 

ABSTRACT ............................................................................................................................................... IV 

DEDICATION ............................................................................................................................................. V 

ACKNOWLEDGMENTS ............................................................................................................................. VI 

LIST OF FIGURES ...................................................................................................................................... IX 

LIST OF TABLES ........................................................................................................................................ XI 

1. INTRODUCTION .............................................................................................................................. 1 

1.1. BACKGROUND .................................................................................................................................. 1 
1.2. PROBLEM STATEMENT ....................................................................................................................... 3 
1.3. RESEARCH OBJECTIVES ...................................................................................................................... 3 

2. LITERATURE REVIEW ....................................................................................................................... 5 

2.1. DEFINITIONS .................................................................................................................................... 5 
2.2. FEED-FORWARD NEURAL NETWORK .................................................................................................... 6 
2.3. BACKPROPAGATION .......................................................................................................................... 8 
2.4. CONSTRUCTIVE AND PRUNING ALGORITHMS ........................................................................................ 10 

2.4.1. Upper bound on hidden nodes for pruning algorithms ........................................................ 12 
2.4.2. Lower bound on hidden nodes for constructive algorithms ................................................. 13 

2.5. EMPIRICAL FORMULAS..................................................................................................................... 14 
2.6. TERMINATING TRAINING .................................................................................................................. 15 

2.6.1. Generalization Loss Threshold............................................................................................... 16 
2.7. FEATURE SELECTION........................................................................................................................ 17 

2.7.1. Likelihood ratio test statistics ................................................................................................ 17 
2.7.2. Weight Based Saliency Measures .......................................................................................... 18 
2.7.3. Signal to Noise Ratio (SNR) Saliency measure ....................................................................... 19 
2.7.4. Other Methods ...................................................................................................................... 21 

2.8. GENERAL ENSEMBLE METHOD .......................................................................................................... 22 
2.8.1. Introduction ........................................................................................................................... 22 

3. METHODOLOGY ............................................................................................................................ 23 

3.1. INTRODUCTION .............................................................................................................................. 23 
3.2. EFFICIENT STRUCTURE USING UPPER LAYER WEIGHTS ........................................................................... 23 

3.2.1. Sum of Squared Weights (SSW) ............................................................................................. 24 
3.2.2. Mean Sum of Squared Weights (MSSW) ............................................................................... 24 
3.2.3. MSSW Method ...................................................................................................................... 25 

3.3. SUFFICIENTLY TRAINING AN ANN ...................................................................................................... 27 
3.3.1. Sum of Weights ..................................................................................................................... 28 
3.3.2. Incremental Change in Sum of Weights ................................................................................ 28 
3.3.3. Percentage Change in Sum of Weights ................................................................................. 29 
3.3.4. Threshold stopping criterion ................................................................................................. 29 

3.4. COMBINING STRUCTURE SELECTION, FEATURE SELECTION, AND TRAINING TERMINATION METHODS .............. 30 

4. RESULTS ........................................................................................................................................ 32 

4.1. INTRODUCTION .............................................................................................................................. 32 
4.2. MEAN SUM OF SQUARED WEIGHTS (MSSW) ..................................................................................... 32 

4.2.1. XOR Problem ......................................................................................................................... 32 



viii 

Page 
4.2.2. Body Fat Data Set .................................................................................................................. 35 
4.2.3. Finance Industry Data Set ...................................................................................................... 38 
4.2.4. Hot Dog Data Set ................................................................................................................... 41 
4.2.5. Summary ............................................................................................................................... 44 

4.3. SUFFICIENTLY TRAINING A NEURAL NETWORK ...................................................................................... 44 
4.3.1. Introduction ........................................................................................................................... 44 
4.3.2. XOR Data Set/Discussion of Data Analysis ............................................................................ 45 
4.3.4. Finance Data Set .................................................................................................................... 52 
4.3.5. Hot Dog Data Set ................................................................................................................... 55 
4.3.6. Body Fat Data Set .................................................................................................................. 56 
4.3.7. Summary ............................................................................................................................... 59 

4.4. REGRESSION EQUATION FOR STOPPING TRAINING................................................................................. 60 
4.4.1. Introduction ........................................................................................................................... 60 

4.5. COMBINING METHODS .................................................................................................................... 60 
4.5.1. Introduction ........................................................................................................................... 60 
4.5.2. Metrics Used.......................................................................................................................... 61 
4.5.3. Fisher’s Iris Data Set .............................................................................................................. 61 
4.5.4. Body Fat Data Set .................................................................................................................. 68 
4.5.5. Finance Data Set .................................................................................................................... 70 
4.5.6. Hot Dog Data Set ................................................................................................................... 71 
4.5.7. Summary ............................................................................................................................... 73 

4.6. GENERALIZED ENSEMBLE METHOD .................................................................................................... 74 
4.6.1. Introduction ........................................................................................................................... 74 
4.6.2. GEM Application .................................................................................................................... 74 

5. CONCLUSION/FUTURE WORK ....................................................................................................... 76 

5.1. CONCLUSION ................................................................................................................................. 76 
5.2. FUTURE WORK .............................................................................................................................. 77 

APPENDIX A. .......................................................................................................................................... 78 

% CHNG Regression Results ................................................................................................................. 79 
Training Epoch Stopped Regression Results ........................................................................................ 80 

APPENDIX B. BLUE DART ........................................................................................................................ 83 

APPENDIX C. STORY BOARD ................................................................................................................... 84 

BIBLIOGRAPHY ....................................................................................................................................... 85 

VITA ....................................................................................................................................................... 89 

 
 
  



ix 

List of Figures 
Page 

Figure 2-1 Single Hidden Layer Feedforward Neural Network  (Caudill & Butler, 1992) 7 

Figure 2-2 Theoretical vs Real World Validation Error ................................................... 16 

Figure 3-1 MSSW Example Graphs ................................................................................. 27 

Figure 3-2 Combining Methods ........................................................................................ 31 

Figure 4-1 XOR Problem MSSW ..................................................................................... 33 

Figure 4-2 XOR Problem Accuracy ................................................................................. 34 

Figure 4-3 Body Fat Problem MSSW ............................................................................... 36 

Figure 4-4 Body Fat Problem – Accuracy ........................................................................ 37 

Figure 4-5 Finance Data MSSW ....................................................................................... 39 

Figure 4-6 Finance Data Accuracy ................................................................................... 40 

Figure 4-7 Hot Dog MSSW .............................................................................................. 42 

Figure 4-8 Hot Dog Accuracy........................................................................................... 43 

Figure 4-9 XOR Data Weight Values ............................................................................... 46 

Figure 4-10 XOR Data Sum of Weights ........................................................................... 47 

Figure 4-11 Average Sum of Weights .............................................................................. 47 

Figure 4-12 XOR Incremental Weight Change ................................................................ 48 

Figure 4-13 XOR Data %CHNG ...................................................................................... 50 

Figure 4-14 Finance Data - Total Sum of Weights During Training ................................ 53 

Figure 4-15 Finance Data - Incremental Change in Sum of Weights ............................... 53 

Figure 4-16 Finance Data - % Change in Sum of Weights ............................................... 54 

Figure 4-17 Hot Dog Sum of Weights .............................................................................. 55 

Figure 4-18 Body Fat Data %CHNG vs. Accuracy .......................................................... 57 

Figure 4-19 Body Fat Data Moving Average ................................................................... 58 

Figure 4-20 Iris Data all Features ..................................................................................... 62 

Figure 4-21 Iris Data All Features- 2 Middle Neurons ..................................................... 63 

Figure 4-22 Iris Data- Feature 1 Removed ....................................................................... 64 

Figure 4-23 Iris Data- Feature 1&2 Removed .................................................................. 65 

Figure 4-24 Iris Data- 1, 2& 3 Removed .......................................................................... 66 

Figure 4-25 Iris SNR Validation Error ............................................................................. 67 



x 

Page 

Figure 4-26 Body Fat Data – Combined Method ............................................................. 69 

Figure 4-27 Finance Data – Combined Method vs. Other Heuristics ............................... 71 

Figure 4-28 Hot Dog Data – Combined Method vs. Other Heuristics ............................. 72 

 



xi 

List of Tables 
Page 

Table 4-1 XOR MSSW vs. Empirical Heuristics ............................................................. 35 

Table 4-2 Body Fat MSSW vs. Empirical Heuristics ....................................................... 38 

Table 4-3 Finance Data MSSW vs. Empirical Heuristics ................................................. 41 

Table 4-4 Hot Dog MSSW vs. Empirical Heuristics ........................................................ 44 

Table 4-5 XOR Data Visual Incremental Truncation Accuracy ....................................... 49 

Table 4-6 XOR Data % CHNG Threshold Truncation Results ........................................ 51 

Table 4-7 Finance Problem – Threshold Stopping Criterion Result ................................ 54 

Table 4-8 Hot Dog Data Training ..................................................................................... 56 

Table 4-9 Body Fat Data Terminating Criterion ............................................................... 58 

Table 4-10 Combined Methods Summary – Iris Data ...................................................... 67 

Table 4-11 Cascade Correlation Method – Iris Data ........................................................ 68 

Table 4-12 Body Fat Data Combined Method vs. Other Heuristics ................................. 69 

Table 4-13 Combined Methods Summary – Finance Data ............................................... 70 

Table 4-14 Combined Methods Comparison – Finance Data ........................................... 71 

Table 4-15 Combined Methods Summary – Hot Dog Data ............................................. 72 

Table 4-16 Combined Method vs. Other Heuristics – Hot Dog Data ............................... 73 

Table 4-17 GEM Application ........................................................................................... 75 

 
 
 



1 
 

 

USING UPPER LAYER WEIGHTS TO EFFICIENTLY CONSTRUCT AND TRAIN 

FEEDFORWARD NEURAL NETWORKS EXECUTING BACKPROPAGATION 
 

1. Introduction 

1.1. Background 

In general, the size of a neural network directly affects both network complexity 

and learning time.  The size of the network also impacts the ANN’s ability to operate 

effectively with data not contained in the training set (Bebis & Georgiopoulos, 1994).  

Bebis & Georgiopoulos compare the process of determining the correct number of hidden 

nodes to curve fitting a set of data points.  If the curve is a high-order polynomial and 

intersects every point in the data set, the curve likely will not be accurate when 

introduced to new data.  On the other hand, if a curve does not fit the training set with 

moderate success it likely will not be accurate when introduced to new data either.  

Finding a balance between these two scenarios is, for lack of a better term, an art.  

Determining the number of hidden nodes acts in a similar fashion.  Too many neurons 

and the network will over-learn data, also known as over-training, but too few neurons 

will not provide an ideal model either (Kavzoglu, 1999).  Many have researched the 

problem of determining the “best” number of hidden neurons.  The different approaches 

can be split into five categories: constructive algorithms, pruning algorithms, trial and 

error, empirical formulas, and hybrid methods.  Constructive algorithms start training a 

network with a small number of middle layer nodes and add structure as necessary.  

Pruning algorithms start training a network with an overly large number of middle layer 
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nodes and prune them off.  Trial-and-error requires no structured thought to how or why a 

given number of hidden neurons are used.  Empirical formulas are self explanatory in that 

they determine the number of hidden nodes with a formula.  These formulas usually 

incorporate the data set of interest’s number of variables and classes.  Hybrid techniques 

use a combination of constructive and pruning algorithms along with other methods such 

as genetic algorithms and singular value decomposition  (Ileana, Rotar, & Incze, 2004) 

(Teoh, C, & Xiang, 2006).   

 Selecting the correct number of hidden layer nodes for a neural network is not the 

only work concerning the structure of neural networks that has been conducted.  Several 

researchers have investigated ways of selecting which inputs are important to the 

classification process.   This is known as feature selection.  An approach introduced by 

Bauer, Alsing, & Greene, uses signal-to-noise ratios (SNR) to accomplish feature 

selection (Bauer, Alsing, & Greene, 2000).  The approach using SNR is the motivation 

behind the research in this paper.  The SNR method, discussed in more detail in section 

2.7.3, gathers data from the lower layer weights.  This information is used to determine 

which features are actually important.  The work in this research is an analysis of the 

upper layer weights, which connect the middle layer neurons to the outputs.    

 The upper layer weights of a network can also be analyzed to gain an 

understanding of when a network is sufficiently trained.  When to terminate training is an 

open problem.  If a network is trained for too few epochs, the network is not able to 

succesfully classify data.  If a network is trained for too many epochs, time is wasted 

during the training process.  In this research, the upper layer weights of a network are 

evaluated to gain insight regarding the progress of training.    
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 Combining the insight upper layer weights provide regarding structure size and 

training status of a neural network with SNR feature selection provides the building 

blocks of a process to train a succesful, efficient neural network structure.  

1.2. Problem Statement 

There are many methods for determining the best number of hidden nodes for a 

multi-layer neural network.  Currently, however, there has not been much effort to 

analyze upper layer weights to accomplish this during the training process of a network.  

This research will introduce an approach to determine an efficient number of hidden 

nodes in a multi-layer feed forward neural network.  The upper layer weights should 

provide information regarding the quality of neural networks being used and the progress 

of the training process.  Selecting a middle layer structure, terminating training, and 

removing non-salient features (via the SNR method) are all necessary to build a 

successful network structure.  A successful neural network not only learns the data it is 

trained with, but can also generalize well.  An iterative, structured process to construct a 

neural network that generalizes well would be a useful tool to minimize time 

experimenting with neural network attributes.    

1.3.Research Objectives 

The focus of this effort is to construct quality neural networks using upper layer 

weights.  In particular, the correct middle layer structure is of interest.  After arriving at a 

method of determining an “efficient” number of hidden layer nodes, the method will be 

compared to a current constructive algorithm and empirical formulas.  The objective is to 

provide a method regarding training that is efficient and avoids over learning the data.  
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The culmination of this work will be to combine these methods with SNR feature 

selection to build a structured process to follow in selecting an efficient, successful neural 

network in a timely manner.   A fusion technique will also be introduced to yield the best 

possible results.  
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2. Literature Review 

This chapter contains definitions of common neural network terms, an 

explanation of multi-layer perceptrons, back propagation, discussion of current methods 

to determine neural network structure, pruning/constructive algorithms, and a discussion 

of feature selection techniques.  The feature selection techniques are included, because 

these techniques can be adapted to hidden layer structure selection as well.  

2.1. Definitions 

Back-propagation method:  A learning algorithm for updating weights in feed forward 

neural network that minimizes mean squared mapping error. (Svozil, Kvasnicka, & Jiri, 

1997) 

Constructive Algorithms:  Process that begins with a small number of hidden neurons, 

trains the network, before adding hidden neurons as necessary prior to retraining. 

Epoch: A complete set of data used in the training of a neural network after one full 

cycle; also known as a training cycle. (Steppe J. M., 1994) 

Exemplar: One observation of data input into a neural network.  Contain one value for 

each feature.   

Feature: The individual entries found in exemplars.  They contain information that can 

prove helpful in classifying exemplars.  In other fields, features are known as attributes 

and independent variables. (Steppe J. M., 1994) 

Feed-Forward: A network in which each node in a given layer is forward connected to 

every node in the next layer. (Steppe J. M., 1994) 

Hidden layer:  A layer of neurons located between the input layer and the output layer. 
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Hidden neurons:  In a multi-layer network these are the neurons that are present in the 

“hidden layers”.  In other words, any neuron that is not an input neuron or an output 

neuron is a hidden neuron. (Steppe J. M., 1994) 

Hybrid techniques: A combination of constructive & pruning algorithms along with 

other methods (such as genetic algorithms and singular value decomposition) used to 

determine the best number of hidden layer neurons. (Steppe J. M., 1994) 

Multilayer Perceptron: A multilayer feed-forward network that is fully connected.  Any 

neuron in a given layer is connected to every neuron in the next layer.  They are the most 

widely used and studied neural network classifiers. (Zhang, Jiang, Liu, Liang, & Yu, 

1997) 

Neural Network:   An important statistical tool for classification. They can adjust 

themselves to data without any prior knowledge of the input data.  They can approximate 

any function with arbitrary accuracy.  (Zhang G. P., 2000) 

Pruning Algorithm: Process that starts training with a larger than necessary number of 

hidden neurons, remove the neurons that are not needed, and retrain until success is 

obtained. (Reed, 1993) 

2.2. Feed-Forward Neural Network 

Feed-forward neural networks are generally used in two types of applications.  

They are used to estimate a linear or nonlinear function for prediction in regression 

analysis and to estimate a linear or nonlinear discriminant function for classification in 

discriminant analysis (Steppe J. M., 1994) 
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As stated in the definitions, a multi-layer perceptron (MLP) is a multilayer feed-

forward network that is fully connected.  This research will specifically involve multi-

layer perceptrons.   

 

Figure 2-1 Single Hidden Layer Feedforward Neural Network  (Caudill & Butler, 1992) 

Figure 2-1 displays that neurons residing in different layers are connected by 

weighted synapses.  The input layer contains a number of neurons that corresponds to the 

number of inputs for any/all exemplars in the data set.   Normalized feature input data is 

passed through the input layer.  This data can be the raw data or some 

transformation/projection of it.   

 The hidden layer nodes have a linear or nonlinear activation function.  Linear 

functions are generally used for regression analysis and nonlinear for discriminant 

analysis.  The functions receive weighted variations of the input data.  The specific 

activation function used in this research is discussed in section 2.3.  After passing through 
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the activation function, the output again “travels” along weighted synapses toward the 

output nodes.    

 The output layer nodes also have linear or nonlinear activation functions (again 

depending on the application).  Just like the hidden layer, linear activation functions are 

generally used for function approximation and nonlinear functions for discriminant 

function applications (Steppe J. M., 1994). 

2.3. Backpropagation  

As stated previously, multi-layer perceptrons (MLPs) are the most popular neural 

networks.  MLPs all execute the backpropagation algorithm.  Lippmann explains the 

backpropagation training algorithm as “an iterative gradient algorithm designed to 

minimize the mean square error between the actual output of a multilayer feed-forward 

perceptron and the desired output” (Lippmann, 1987).  The actual instantaneous 

backpropagation algorithm is available below (Steppe J. M., 1994).  This is an 

instantaneous algorithm, because the weights are updated after each exemplar is 

introduced to the network.  Another version of backpropagation waits until an entire 

epoch is complete before calculating the error gradient.      

The Instantaneous Backpropagation Algorithm 
for a 

Single Hidden Layer Feedforward Neural Network. 
1. Randomly partition data into training, training-test, and validation sets. 
2. Normalize the feature input data. 
3. Initialize weights to small random values. 
4. Present the network with a randomly selected vector from the training set, denoted xp  
5. Calculate the network output zp associated with the pth training vector 

• kth neural network output: 2 1

0
( )

H
p
k jk j

j
z f w x

=

= ∑  , where 

- H is the number of middle nodes  
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- ( ) 1/ (1 )f e αα −= + for sigmoidal activation function 
- ( )f α α= for linear activation functions 
- 2

jkw is the weight from middle node j to output node k  
- 1

0x is the middle layer bias term and is set equal to 1  

- 1 1
0

( )M p
j ij ii

x f w x
=

= ∑  is the output of middle node j  
- M is the number of feature inputs (input neurons)   
- 1

ijw is the weight from input node i to middle node j 
-  0

px is the input layer bias term, and is equal to 1  
- p

ix is the ith feature input  
6. Update the weights 

• Output layer weights: 2 2 2 1( ) ( )jk jk k jw w xηδ+ −= + , 
• Input layer weights: 1 1 2( ) ( ) p

ij ij j iw w xηδ+ −= + ,where 
- 2( )jkw + is the updated weight from middle node j to output k 
- 2( )jkw − is the old weight from the middle node j to output k 
- 1( )ijw + is the updated weight from input i to middle node j 
- 1( )ijw − is the old weight from input i to middle node j 
- η is the step size  
- 2 ( ) (1 )p p p p

k k k k kd z z zδ = − − if there is a sigmoid on the output  
- 2 ( )p p

k k kd zδ = − if the output is linear  

- 1 1 1 2 2

1
(1 ) ( )

K

j j j k jk
k

x x wδ δ −

=

= − ∑ if there is a sigmoid on the middle node j 

- 1 2 2

1
( )

K

j k jk
k

wδ δ −

=

=∑ , if middle node j is linear  

- p
kd  is the kth desired output of the pth exemplar  

7. If training-test set error does not indicate sufficient convergence, go to step 4.  

This algorithm is called the back-propagation algorithm, because the output error 

propagates from the output layer through the hidden layers to the input later (Svozil, 

Kvasnicka, & Jiri, 1997). 

 Step 1 randomly divides the problem data into a training data set and a validation 

set.  Training data is used to create weight parameters within the model.  The validation 
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data is used to evaluate the neural network’s ability to generalize (work accurately on 

data it has not seen before). 

Step 2 normalizes the data in both the validation and training sets.   

Step 3 initializes weight parameters randomly between -.1 and .1.  This is the 

interval used in this research, but it is by no means a concrete rule. 

Step 4 introduces a randomly selected vector xp to the neural network. p 

designates the pth vector x in the training set. 

Step 5 calculates the vector of network outputs.  The sigmoidal activation 

function ( ) 1/ (1 )f e αα −= + , known as a squashing function, is used because its derivative 

is continuous and makes the weight update rule simple for the backpropagation training 

(Steppe J. M., 1994).  Also, previous work by (Cybenko, 1988) shows that a multi-layer 

neural network executing backpropagation with linear output nodes is capable of 

arbitrarily accurate approximations for any arbitrary function given a sufficient amount of 

hidden nodes are used with a sigmoidal activation function.  The topic of “sufficient 

amount of hidden nodes” is a focus of this research. 

Step 6 calculates the instantaneous output error of the neural network.  The step 

size, η , can be a constant or a variable.  White proposes that a constant learning rate is 

not efficient since randomness in the input, such as noise, causes fluctuations in the 

weight vector.  This prevents backpropagation from converging to an optimal weight 

vector (White, 1993). 

2.4.Constructive and Pruning Algorithms  
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Constructive algorithms and pruning algorithms are closely related.  A 

constructive algorithm begins with a small number of hidden neurons and trains the 

network.  Following a training cycle, a neuron is added to the hidden layer and the 

network is trained again.  This process is repeated until performance is satisfactory 

(Frean, 1990).  Pruning algorithms are essentially the opposite of constructive algorithms.  

Their approach is to train a network with a larger than necessary number of hidden 

neurons, remove the neurons that are not needed, and retrain until success is obtained 

(Reed, 1993).  Success is defined by the user.  As mentioned earlier there is a trade-off 

between minimizing error in the neural network and maintaining the network’s ability to 

be a successful general model. 

Steppe, Bauer, and Rodgers introduced a pruning type algorithm for hidden 

neuron selection using the likelihood ratio test statistic (Steppe, Bauer, & Rogers, 1996).  

This same algorithm is utilized by Belue, Steppe, & Bauer and Kocur, et al. (Belue, 

Steppe, & Bauer, April 1996) (Kocur, et al., 1996).  Bacauskiene and Verikas introduce a 

feature selection procedure which performs a pruning type algorithm using multiple 

neural networks and eventually committees (multiple sets of neural networks used for 

classification) (Verikas & Bacauskiene, 2002) (Bacauskine & Verikas, 2004). 

Two succesful constructive algorithms include Upstart algorithm and the Cascade 

Correlation algorithm.  

 The Upstart algorithm adds middle layer nodes if the current middle layer 

structure causes the network to get stuck in a local minimum when trying to minimize 

error.  If the current structure gets “stuck”, two more nodes are added  (Frean, 1990).  

This algorithm is very succesful when attempting to solve binary problems as it is 
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guaranteed to eventually classify each point correctly.  However, this algorithm can lead 

to overlearning of the data.  Fanguy & Kubat introduce modifications to the Upstart 

algorithm that allow it to solve multiclass problems  (Fanguy & Kubat, 2002). 

The Cascade Correlation algorithm also constructs a network structure without 

the use of backpropagation or error signals.  Hidden units are added to the network one 

by one.  Once training epochs no longer create a significant reduction in error, a new 

hidden neuron is added. Next, the input weights are altered to correlate the output of the 

hidden nodes with the network’s output error.  Once this is done, the whole network is 

retrained and the process is repeated until the total error is below a certain threshold 

(Fahlman & Lebiere, 1990).  This process has proven succesful for real valued mappings 

(Bebis & Georgiopoulos, 1994).  Yang & Honavar publish a paper with Cascade 

Correlation experiments including performance for Fisher’s Iris data set.  Results for the 

iris data from this work are compared to the Cascade Correlation results in 4.5.3. 

 The constructive algorithm proposed in this research follows similar logic to the 

Upstart and Cascade Correlation algorithms.  However, instead of observing the error 

during training, the upper layer weights are observed to determine when enough structure 

is present.     

2.4.1. Upper bound on hidden nodes for pruning algorithms 

Huang and Babri proved that the number of hidden nodes for a neural network 

with a non-linear activation function should never be larger than the number of input 

samples (exemplars) (Huang & Babri, 1998).  However, if the number of exemplars is 

excessive, the computational complexity of determining the correct sized ANN increases.  
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Other work provides a tighter bound on the number of hidden nodes provided some 

conditions are met.  Cover introduces a rule based on separating capacities of families of 

nonlinear decision surfaces (Cover, 1965).  He shows that a family of surfaces having s 

degrees of freedom has a natural separating capacity for 2s training exemplars.  Unless 

there a more than 2s exemplars, vague generalization is likely.  Cover’s theorem gives the 

following upper bound on the number of middle nodes: 

.5 1
1

PH
M

−
<

+
 (Cover, 1965) 

where P is the number of exemplars and M is the number of features.  If the number of 

features is large and the number of exemplars is small, Cover’s theorem could suggest 

fewer middle nodes than are required for the complexity of the problem.  Cover’s 

theorem’s upper bound is often overly conservative and can call for more middle nodes 

than necessary.  For this research, the middle layer structures tested are not bigger than 

Cover’s criterion.  We use Cover’s theorem because it gives the largest cardinality of a 

set of training vectors such that any possible class assignment of the vectors can be 

implemented with probability one (Steppe, Bauer, & Rogers, 1996).  Vapnkik and 

Cherconenkis (Vapnik & Chervonenkis, 1971), Baum and Haussler (Baum & Haussler, 

1989), and Sontag (Sontag, 1992) provide other heuristics.   

2.4.2. Lower bound on hidden nodes for constructive algorithms 

The lower bound on hidden nodes for a constructive algorithm is normally one 

neuron (Sartori & Antsaklis, 1991) (Parekh, Yang, & Honavar, 2000).  There are cases 

when 1 middle neuron is not sufficient in separating data, but this structure size is tested 

on each data set in this research. 
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2.5. Empirical Formulas 

There are a few empirical formulas that are suggested as good heuristics to 

determine the “best” number of hidden nodes for a given data set.  These formulas 

include, but are not limited to, the formulas listed in this section. 

The following formulas refer to different neurons of the network structure as: 

Hidden layer neurons:  M 

Input layer neurons: K 

Outer layer neurons: J 

Formula 1: According to the Kolmogorov theorem  

2* 1M K= +  (Kurkova, 1992) 

Formula 2: Lippmann believes the number of hidden nodes should be 

*M J K=  (Lippmann, 1987) 

when the number of inputs is larger than the outputs. 

Formula 3: Zhang has determined the range of M as  

*M J K c= +  (Zhang, Jiang, Liu, Liang, & Yu, 1997) 

Where c is some constant between 1 and 10  

Formula 4: Daqi and Shouyi determined the best number of hidden neurons is 

*( 2) 1M K J= + +   (Daqi & Shouyi, 1998) 

Formula 5: 

0

J

i

M
P

i=

 
> 

 
∑  

If i>M, 0
M
i

 
= 

 
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Where P is the number of patterns or separable regions in the data (Mirchandani & Cao, 

1989) 

Formula 6: Gormon determined the best number of hidden neurons as 

2logM P=  (Gorman & Sejnowski, 1988) 

Gao, Chen and Qin introduced a method of using each of these empirical formulas 

and to create a lower and upper bound that contains the best possible middle layer size 

(Gao, Chen, & Qin, 2010).   

2.6. Terminating Training 

When to terminate training is an open problem.  Since the algorithm used in feed-

forward neural nets attempts to minimize mean square error, many training termination 

heuristics involve the mean square error of the validation set.  The validation error is said 

to mimic the generalization error of a network.  Prechelt provides a simple algorithm to 

terminate training:  

1. Split the training data into a training set and a validation set, e.g. in a 2-to-1 
proportion.   

2. Train only on the training set and evaluate the per-example error on the validation 
set once in a while, e.g. after every fifth epoch. 

3. Stop training as soon as the error on the validation set is higher than it was the last 
time it was checked. 

4. Use the weights the network had in that previous step as the result of the training 
run. 
 

Prechelt continues on and discusses that this type of algorithm can result in premature 

termination. 
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Figure 2-2 Theoretical vs Real World Validation Error 

 (Prechelt, 1998) 

Figure 2-2 displays two separate graphs.  For each graph, the horizontal axis 

represents training epochs and the vertical axis represents error.  The graph on the left 

displays what validation error looks like in a perfect scenario.  The graph on the right 

displays what validation error can actually look like (Prechelt, 1998).  The scenario 

displayed in the graph on the right is much more likely to occur.   Since this is the case, 

other stopping criteria have been developed.  These types of stopping criterion include 

but are not limited to generalization loss threshold criterion, quotient of generalization 

loss and progress, and generalization increase over a given number of successive epochs.  

Prechelt tested these three methods and determined that the generalization loss method 

has the highest probability of providing “good” results.   

2.6.1. Generalization Loss Threshold 

 ( )optE t  is defined as the lowest validation set error obtained in epochs up to t.   

min
'( ) : ( ')opt t t vaE t E t≤=  
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The generalization at epoch t is the relative increase of the validation error over  

so far: 

( )( ) 100* 1
( )

va

opt

E tGL t
E t

 
= −  

 
 

With the GL(t) value, the following stopping criterion is used: 

GLα: stop after first epoch t with GL(t)>α  (Prechelt, 1998) 

α is determined by the user.  The reasoning behind this method is over fitting does not 

occur until error decreases slowly. 

Instead of focusing on the validation error during training, this research will 

observe the activity of the upper layer weights to determine a termination point.  The 

developed method will be compared to the generalization loss threshold stopping 

criterion.   

2.7. Feature Selection  

This section details different approaches used for feature selection, which can be 

thought of as a special case of architecture selection (Bacauskine & Verikas, 2004).   

Methods discussed include algorithms utilizing likelihood ratio test statistics and others 

using signal to noise ratios.  The work done in feature selection, specifically the SNR 

saliency measure methods discussed in 2.6.3, is included because the application of these 

methodologies to hidden layer neurons is utilized in this research.   

2.7.1. Likelihood ratio test statistics 

Steppe, Bauer, and Rogers use likelihood ratio tests as part of a pruning algorithm 

and also use the same test statistic for feature selection.  The likelihood test statistic is:  
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R F

R F

F

F

SSE SSE
df dfL SSE

df

−
−

=  (Steppe, Bauer, & Rogers, 1996) 

where F indicates the full model and R indicates the reduced model.  The reduced 

model(s) possesses some combination of k-1 features where k features exist in the full 

model.  The computational complexity of using this test statistic to determine the correct 

number of hidden layer nodes is much easier than feature selection.  This holds true, 

because all combinations of k-1 features must be tested when one feature is being 

removed whereas the number of hidden nodes is simply decreased by one to test a 

smaller hidden layer structure.        

2.7.2. Weight Based Saliency Measures 

This section contains information regarding weight based saliency measures.  

They are of particular interest, because they are a building block for SNR saliency 

measures (discussed in 2.7.2).  Previously developed feature screening methods based on 

saliency measures, such as the Belue-Bauer screening method and the Steppe-Bauer 

screening method, utilize a partial derivative based saliency measure and a weight based 

saliency measure (Belue & Bauer, 1995) (Steppe & Bauer, 1996).  A weight based 

saliency measure, introduced by Tarr, is: 

1 2
,

1
( )

J

i i j
j

wτ
=

=∑  (Tarr, 1991) 

This measure determines the saliency of a feature by summing the squared values of the 

weights connecting feature i to the hidden nodes j.  The superscript 1 indicates the weight 

is the first layer weight from node i to node j.  This statistic is used because a square of 
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the first layer weights in a salient feature will be significantly larger than a non-salient 

feature in an ANN.   

2.7.3. Signal to Noise Ratio (SNR) Saliency measure 

SNR Saliency measures are used to determine the relative value of features and 

provide an ability to rank features in order of importance (Ubeyli, 2008).  The SNR 

saliency measure and the weight based saliency measure are similar in that they sum the 

squares of the first layer weights.  However, the SNR saliency measure introduces an 

injected noise feature for comparison: 

1 2
,

1
10

1 2
,

1

( )
10log

( )

J

i j
j

i J

N j
j

w
SNR

w

=

=

 
 
 =
 
 
 

∑

∑
 

SNRi is the SNR saliency measure for feature i and 1
,N jw is the first layer weight from 

noise node N to node j.  J is the number of hidden nodes.  The weights involving noise 

features are initialized and updated in the same way that weights from other features in 

the first layer are.  Noise is injected with values that follow a Uniform(0,1) distribution.   

Further, the scaled logarithmic transformation of the ratio converts the saliency measure 

to a decibel scale (Ubeyli, 2008).  Again, similar to the weight based saliency measure, 

the SNR saliency measure can be used to rank order the saliency of features where higher 

SNR saliency measure values correspond to higher feature saliency.  The reasoning 

behind this SNR saliency measure is a relevant feature should have first layer weights 

emanating from it moving in a constant direction, as the ANN retrains, until the error is 

minimized.  On the contrary, if a feature is not significant, the updates to the weights 
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emanating from a feature’s input node should be random and tend towards zero.  With 

this idea, salient features should have a SNR saliency measure larger than 0 whereas non-

salient features’ SNR saliency measures should be close to or less than 0.0 (Bauer, 

Alsing, & Greene, 2000). 

Belue & Bauer use a modified version of Tarr’s saliency measure for feature 

screening to construct a model that reduces/eliminates non-salient features while 

maintaining generalization.  Bauer, Alsing, and Greene’s updated SNR feature selection 

method accomplishes this in a single training run with the SNR saliency measure and is 

summarized below (Bauer, Alsing, & Greene, 2000): 

1. Introduce a Uniform (0, 1) noise feature xN to the original set of features. 
2. Standardize all features to zero mean and unit variance. 
3. Randomly initialize the weights between −0.001 and 0.001. 
4. Randomly select the training and test sets. 
5. Begin to train the ANN. 
6. After each epoch, compute the SNR saliency measure for each input feature. 
7. Interrupt training when the SNR saliency measures for all input features have 
stabilized. 
8. Compute the test set classification error. 
9. Identify the feature with the lowest SNR saliency measure and remove it from further 
training. 
10. Continue training the ANN. 
11. Repeat steps 6–9 until all the features (except the noise feature) in the original set are 
removed from training. 
12. Compute the reaction of the test set classification error due to the removal of the 
individual features. 
13. Retain the first feature whose removal caused a significant increase in the test set 
classification error, as well as 
all features which were removed after that first salient feature. 
14. Retrain the ANN with only the parsimonious set of salient input features.  

This method is powerful in feature selection, because it can potentially only 

require a single training run.  This is opposed to other screening methods, such as the 

Steppe-Bauer and Belue-Bauer methods that typically require 10 to 30 training runs 



21 
 

(Bauer, Alsing, & Greene, 2000).  Ubeyli demonstrated the robustness of the SNR 

saliency metric in a study where he used the SNR saliency method to determine salient 

input features for a probabilistic neural network (PNN) used to classify internal carotid 

arterial Doppler signals (ICADS) (Ubeyli, 2008).  After running the SNR saliency 

measure method, the PNN trained with only salient features outperformed the PNN using 

all original features as inputs.  Ubeyli has also applied this same method to different data 

sets (Guler & Ubeyli, 2005). 

2.7.4. Other Methods 

Principal components analysis (PCA) is a classic approach to determining 

important variables in multivariate data.  For more information regarding PCA see 

Multivariate Analysis: Methods and Applications (Dillon & Goldstein, 1984). 

Cancelliere builds on the technique of PCA for feature selection.  The method he 

presents performs PCA on every pattern presented by the features.  After determining 

which features are non-salient, each exemplar’s value for the non-salient features is set to 

the average value of the respective feature across all exemplars (Cancelliere, 2003).  This 

allows for a more efficient use of computation, because patterns in the data that are not 

important are avoided.  This process is done during the training process and continues 

until classification accuracy increases significantly.    

Setiano and Liu introduce an algorithm that selects features based on an 

augmented error function, which is used to identify salient features (Setiono & Liu, 

1997).  Following training, the network will have connections with large magnitude for 

features needed to represent underlying data patterns for classification. 
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2.8.    General Ensemble Method 

2.8.1. Introduction 

The General Ensemble Method fuses network results together.  The method uses 

information from a population of networks and combines them to provide the best 

possible linear combination.   

As Perrone & Cooper present the method, they label the error for a network i as:  

 

This is the error between the desired output f(x) for a given exemplar and actual output 

for a given network i, fi(x).  The general ensemble network can then be defined as: 

 

where N is the total number of networks in the population and: 

 

These αi values are calculated using a correlation matrix: 

 

The relative error between a given network i and the error of the entire population of 

networks is then used to determine αi: 

       (Perrone & Cooper, 1992) 

This method is used to fuse results of network populations in this research to avoid 

encountering a matrix that has encountered a global minimum during its gradient search. 
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3. Methodology 

3.1. Introduction 

This section contains methodology information about two problems addressed in 

this research:   

• building an efficient neural network middle layer structure  
• determining when to conclude the training of a neural network 

During the training process of a neural network, the weights connecting neurons in 

different layers fluctuate.  This process occurs as the network attempts to correctly 

classify data input to the network.  The work in this section is based on the intuition that 

the collection of weights emanating from a given middle layer neuron to each output 

neuron can provide valuable insight regarding the efficiency of network structure.  By 

evaluating the collection of weights emanating from each middle layer neuron 

individually, it is possible that the contribution of adding a new middle layer neuron can 

be evaluated.  Also, the amount of training time required can be estimated using 

information from these weights. 

 After using information from the upper layer weights to determine middle layer 

size and terminate training, the methodologies are combined with SNR feature selection 

to introduce a structured process for constructing a neural network. 

3.2. Efficient Structure Using Upper Layer Weights  

This section contains two different measures used in determining an efficient 

lower bound for middle layer structure.  These measures are used in an algorithm 

proposed in 3.2.3. 
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3.2.1. Sum of Squared Weights (SSW) 

The initial thought regarding the upper layer weights is they could provide insight 

regarding the optimal number of middle layer neurons.  The training of the weights is a 

random process, so the value of an individual weight (i.e. a weight from a middle neuron 

i to an output neuron j) will vary from one training of a network to the next.  The input 

into a given middle neuron is a single weight emanating from each of the features.  While 

the weights emanating from a specific node will vary due to the randomness of the 

algorithm, if trained sufficiently, the network should classify data similarly from one 

training to the next.  Using this logic, the sum of squared weights emanating from each 

middle layer neuron is recorded.  For a given middle neuron i connected to upper layer 

neuron(s) j, this can be calculated as: 

2
,

1
( )

J

i j
j

w
=
∑  

The sum of squared weights metric is chosen, because it rids the weight values of a sign 

and it also magnifies the weights with values larger than 1.  The larger weights tend to 

have the biggest impact on classification (Sietsma & Dow, 1991). 

3.2.2. Mean Sum of Squared Weights (MSSW) 

Observing trends in the sum of squared weights (SSW) across all middle neurons 

led to a value of interest: the average SSW (MSSW) for a selected network structure.  For 

a hidden layer containing I middle layer nodes, the MSSW can be calculated as: 
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Comparing the MSSW across different network structures led to an important 

observation.  With the inputs and output layers held constant, as the number of middle 

layer neurons increase, the average MSSW will reach a maximum for a given middle 

layer structure and then steadily decrease as additional middle layer neurons are added.  

This can happen in two different ways.       

3.2.3. MSSW Method 

Using the observations discussed in section 3.2 thus far, an algorithm was 

constructed to reveal an effective baseline number of middle layer neurons.  For future 

reference, MSSWx is the MSSW value for a network with x middle layer neurons.  For a 

network with a selected number of inputs and outputs, the algorithm is: 

1.  Train 2 network structures: 

Network 1: Structure containing 1 middle layer node 

Network 2: Structure containing 2 middle layer nodes 

2.  If MSSW2 > MSSW1 continue to step 4.  Otherwise go to step 3. 

3.   Let x denote the largest middle layer structure tested thus far.  Train a new 

network structure with x+1 middle layer nodes. If MSSWx >MSSWx-1, continue 

to Step 4.  Otherwise, repeat.  
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*It is important to note that it is possible to get “stuck” in step 3 where MSSWx 

>MSSWx-1 does not occur.  If this appears to be the case, select the first structure 

tested that provided a “significant” increase in validation accuracy 

4.  Let x denote the largest middle layer structure tested thus far.  Train a new 

network structure with x+1 middle layer nodes. If MSSWx <MSSWx-1, continue 

to Step 5.  Otherwise, repeat.  

5.  Stop.  The network configuration with x-1 middle layer nodes is the effective 

baseline structure.  

 

This algorithm proves effective as long as the network is trained sufficiently.  

Each time a network is trained it is recommended to train multiple times.  In this research 

each network structure is run at least 5 times.  This is done to provide insurance against 

the possibility of a neural network getting stuck in a local minimum while navigating the 

error surface during training. The reality of getting stuck in a local minimum on the error 

surface exists, because the starting point of the backpropagation algorithm is random in 

nature.  Decisions based on the results of network trainings are made using the average 

values.   

Figure 3-1 displays two examples of where the presented algorithm would 

terminate.  In both plots, the algorithm would suggest 3 middle layer neurons. 
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Figure 3-1 MSSW Example Graphs 

3.3. Sufficiently Training an ANN 

In section 3.2, the underlying assumption for the proposed algorithm is the 

network is sufficiently trained.  If the network is undertrained, using an algorithm like the 

MSSW method can result in poor network performance.  To analyze simulation output, it 

is important to remove transient data (Law, 2007).  The goal in doing this is to remove 

bias created during a simulation model’s warm-up period.  Data remaining once the 

transient period is removed is known as steady-state data.  Steady state can be analyzed to 

better understand the effects of the distribution(s) of the input data.  There are multiple 

strategies attempting to accomplish this. 

In an effort to integrate this practice to neural networks, the aforementioned 

truncation strategies were implemented on the training of neural networks.  Throughout 

the training process, the upper layer weights of the network are altered.  They initialize at 

some random point (in this research, between -.1 and .1) and take on different values 

based on the data input to the network.  Initially, the intuition was the upper layer weights 

would stabilize at some point when the network reached a sufficient amount of training.  
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After reaching this point, the weight values would steady in the same way a mean value 

simulation does upon reaching the “steady-state” period.  If this were the case, truncation 

methods used in the simulation realm could be used to determine a point where training is 

sufficient.  Determining when the network reaches steady state would decrease time of 

training and ensure the network is not over trained.  

3.3.1. Sum of Weights  

To start, the upper layer weights were observed individually to determine if they 

ever stabilized.  This is not the case.  Instead, they seem to tend in their respective 

directions.  The next step in the process is to observe the sum of the upper layer weights. 

 

 

Where ( )i
j kw   is a weight from middle layer node j to upper layer node i during training 

epoch k. 

3.3.2. Incremental Change in Sum of Weights 

The initial thought was the sum of weights for any network would tend toward 

zero during training.  If this were the case, the intuition was once the sum of the weights 

approached zero, training could be terminated.  Unfortunately this logic did not hold.  

The total sum of weights does not always approach zero.  The next step was to observe 

the incremental change in the sum of the weights: 

 

( )i
j k

i j
w∑∑
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inck is the incremental change from training epoch k-1 to epoch k.  The thought was inck 

would decrease as a sufficient amount of training had occurred.  After some initial 

testing, inck does tend to get smaller as the training process unfolds.   So, once the weight 

values start to “settle”, training has concluded.  However, the values of inck where 

training should be terminated tend to vary based on both network structure and the 

magnitude of the input data.   

3.3.3. Percentage Change in Sum of Weights 

In attempt to make a general rule that could apply to multiple networks, the 

percentage change in sum of weights is calculated.  For an epoch k, the percent change in 

the sum of weights is calculated as: 
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The absolute value of the change is calculated because the direction of change was 

deemed unimportant.   

3.3.4. Threshold stopping criterion 

During the initial training of a neural network, the %CHNG value displays 

volatility.  The first 500 to 1000 training epochs, depending on data being analyzed, tend 

to be unstable.  This observation along with the %CHNG variable led to the proposed 

Threshold stopping criterion: 
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For any network structure, train for the minimum of: 

1. 2500 Epochs 

2. After 1000 epochs, the epoch where %CHNG < .025% for 50 consecutive training 

epochs   

This method prevents the network from under training.  The parameters used in 

this method were discovered by observation.  For the data sets used in this research, 2500 

training epochs appears to be the maximum amount required to train a successful 

network.  Also, 1000 epochs is a good rule of thumb to prevent not training long enough.  

The %CHNG variable’s threshold of .025% is another value determined through 

empirical observation.  Paragraph 4.4 discusses an unsuccessful attempt to predict the 

%CHNG value necessary to terminate training for a given network structure/data set.  

When using this method, a given network structure should be trained multiple 

times.  The network structures being used in this research are relatively small.  Due to the 

nature of the gradient search method used during back propagation, it is possible for the 

search to get halted in a local min when trying to minimize error (Bebis & 

Georgiopoulos, 1994).  This can lead to poor performance.  Any network structure should 

be trained multiple times to understand when this is occurring and avoid only having a 

network that is underperforming.   

3.4. Combining Structure Selection, Feature Selection, and Training 

Termination Methods 

Combining the MSSW method, Bauer, Alsing & Greene’s SNR Feature Selection 

Algorithm (Belue & Bauer, 1995), and the proposed Threshold stopping criterion lead to 
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a process for selecting a functional, efficient neural network structure.  The process is 

summarized in Figure 3-2.   

 

Figure 3-2 Combining Methods 

When training a network use the Threshold stopping criterion.   Also, when training a 

network, multiple replications are recommended due to stochastic nature of results.  At 

least 5 replications are used in each case for this research, so average results can be 

observed. 

A written summary of the Combined method: 

Step 1: 
 Select Data 
Step 2: 

Implement middle layer selection algorithm (MSSW method) from section 3.2.  
Step 3: 
 Implement SNR feature selection method from 2.7.3. 
Step 4:  
 Stop. 

During the training of any/all network configuration(s), use the proposed Threshold 

stopping criterion from section 3.3.4.  

Select Data

Use MSSW 
method to 
construct 

middle layer

With  middle 
structure 

set, remove 
non-salient 

features 
using SNR 
method
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4. Results  

4.1.Introduction   

This chapter presents the results of applying the methods discussed in Chapter 3 

to various data sets.  After identifying the results of these methods, they are compared to 

results of the theories discussed in Chapter 2.  Again these methods are building an 

efficient middle layer structure, terminating training, and combining the two with SNR 

feature selection.     

4.2. Mean Sum of Squared Weights (MSSW) 

The algorithm presented in 3.2.3 is applied to various data sets to show results for 

the building efficient network structure.   

4.2.1. XOR Problem 

The XOR problem in this research contains 150 data points, each with an x and y 

coordinate randomly generated by a Uniform(-1,1) distribution.  The goal for the XOR 

problem is to classify the data points into two groups: 

• Group 1- any point in quadrants 1 and 3 on the x,y coordinate plane   
• Group 2- any point in quadrants 2 and 4 on the x,y coordinate plane 

This means there are 2 input neurons and 2 output neurons. Other information about 

neural networks used: 

• 5 replications of each network size are trained  
• Each network is trained for 5000 training epochs  
• 75% of the data is used as training data and 25% is withheld as validation data 
• Step size (η), or learning rate, of .01 is used 
• Lower layer weights are initialized randomly between [-.01.01] 
• Upper layer weights are initialized randomly between [-.1, .1]    
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Figure 4-1 XOR Problem MSSW 

Figure 4-1 displays that MSSW values for varying sizes of the network.  The algorithm 

presented in 3.2.3 would terminate at 3 middle layer neurons.  Figure 4-2 displays the 

accuracies corresponding to the different network structures tested in Figure 4-1.   
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Figure 4-2 XOR Problem Accuracy 

Figure 4-2 shows 3 middle layer neurons produce the highest validation accuracy.  

This implies that 3 middle layer neurons is not only a baseline, but could also be the 

optimal structure.  At first this result seems odd.  Simple logic implies that two lines 

could separate the data into their four separable regions, so only two hidden layer nodes 

are necessary.  However, with only two middle nodes present, the network can get stuck 

in a local minimum while trying to navigate the error surface.  When three nodes are 

present this is much less likely, which explains the increased performance from adding a 

third neuron to the middle layer (Sprinkhuizen-Kuyper & Boers, 1999).   

Table 4-1 includes the results of the MSSW method and other empirical heuristic 

methods from section 2.5. 
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Table 4-1 XOR MSSW vs. Empirical Heuristics 

Heurist Used Middle Layer 
Mean Training 

Accuracy 
Stdev Mean Validation Accuracy Stdev 

Kolmogorov 5 0.9434 0.0194 0.9189 0.0000 

Lippmann 2 0.7823 0.0277 0.8162 0.1036 

Zhang (LB) 3 0.9522 0.0048 0.9189 0.0000 

Zhang (UB) 12 0.8779 0.0403 0.8595 0.0352 

Daqi and Shouyi 4 0.9292 0.0000 0.9189 0.0000 

Mirchandani&Cao 3 0.9522 0.0048 0.9189 0.0000 

Gorman 2 0.7823 0.0277 0.8162 0.1036 

MSSW 3 0.9522 0.0048 0.9189 0.0000 

 

It appears that the MSSW performs as well as the other heuristics.  Kolmogorov’s 

heuristic results in higher validation accuracy, but the difference is minimal.   

4.2.2. Body Fat Data Set 

The data set contains 252 entries, each having 13 inputs: 

• Age (years) 
• Weight (lbs) 
• Height (inches) 
• Neck circumference (cm) 
• Chest circumference (cm) 
• Abdomen circumference (cm) 
• Hip circumference (cm) 
• Thigh circumference (cm) 
• Knee circumference (cm) 
• Ankle circumference (cm) 
• Biceps (extended) circumference (cm) 
• Forearm circumference (cm) 
• Wrist circumference (cm) 

These features are used to predict body fat percentage.  In this problem, the neural 

network is used to determine if the entries are in one of two groups: 
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• Group 1: > 20% body fat 
• Group 2: ≤ 20% body fat 

The network has a structure with 13 input neurons and 2 output neurons with the 

following training parameters:  

• 5 replications of each network size are trained  
• Each network is trained for 5000 training epochs  
• 75% of the data is used as training data and 25% is withheld as validation data 
• Step size (η), or learning rate, of .01 is used 
• Lower and Upper layer weights are initialized randomly between [-.1, .1]    
 

 

Figure 4-3 Body Fat Problem MSSW 

Figure 4-3 displays the MSSW for the body fat data set while using network 

structures with an increasing number of middle layer neurons.  The algorithm would 

terminate with 3 middle layer neurons.  Figure 4-4 displays the accuracy of the network 

for the different network structures displayed in Figure 4-3. 
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Figure 4-4 Body Fat Problem – Accuracy  

Figure 4-4 shows that the highest validation accuracy occurs when 3 middle layer 

neurons are used.  After this point, it appears that additional middle layer neurons result 

in overtraining (training accuracy increases while validation accuracy decreases).   

In this instance, the MSSW method provides not only a good baseline network 

structure, but also the optimal structure.  The results of the MSSW method are compared 

to other empirical heuristics discussed in chapter 2 in Table 4-2.  The heuristics involving 

data patterns are exempt, because determining the patterns in a data set with a large 

number of features/outputs is beyond the scope of this research. 
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Table 4-2 Body Fat MSSW vs. Empirical Heuristics 

Heuristic Used Middle Layer 
Mean 

Training 
Accuracy 

Std. Dev. 
Mean 

Validation 
Accuracy 

Std. Dev. 

Kolmogorov 27 0.9881 0.0090 0.7183 0.0456 

Lippmann 6 0.9788 0.0106 0.7513 0.0330 

Zhang (LB) 7 0.9868 0.0068 0.7183 0.0456 

Zhang (UB) 16 0.9947 0.0075 0.7579 0.0152 

Daqi and Shouyi 9 0.9881 0.0090 0.7381 0.0205 

MSSW 3 0.9312 0.0106 0.7778 0.0449 

 

It appears that the MSSW method performs better than the other structures tested.  The 

recommended structure does not learn the training data as well as other structures, but the 

validation accuracy is the highest of any tested. 

4.2.3. Finance Industry Data Set 

The finance industry data set contains financial information about 25 companies 

across three industries (14 pharmacies, 5 textiles, and 6 super markets).  There are seven 

features:  

• Rate of Return (ROR) 
• Debit/Equity Ratio (Deb/Eq) 
• Sales 
• Earning Per Share (EPS) 
• Net Performance Margin (NPM) 
• Price/Earnings Ration (P/E) 
• Profitability 

4 pharmacies, 1 textile, and 2 super markets are used for validation, while the rest are 

used for training.  The structure of the network used is 7 inputs and 3 output neurons.  

Additional information about training: 

• 5 replications of each network size are trained  
• Each network is trained for 2500 training epochs  
• 75% of the data is used as training data and 25% is withheld as validation data 
• Step size (η), or learning rate, of .01 is used 
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• Lower layer and upper layer weights are initialized randomly between [-.1, .1]    

The network is trained for 2500 training epochs , because observation of training runs 

revealed this to be a point where the network is not under-training.   

 

  

Figure 4-5 Finance Data MSSW 

Figure 4-5, a plot of MSSW for different size networks, displays that the algorithm would 

terminate with 4 middle layer neurons. 
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Figure 4-6 Finance Data Accuracy 

Figure 4-6 shows that adding middle layer neurons, beyond the 4 recommended 

by the algorithm presented in 3.2.3, does increase the validation accuracy of the model.  

The hidden layer with 4 neurons provides an effective baseline structure, but not an 

optimal structure. 

Table 4-3 contains the results of the MSSW method against some empirical 

heuristics discussed in section 2.5.  The heuristics involving data patterns are exempt, 

because determining the patterns in a data set with a large number of features/outputs is 

beyond the scope of this research. 
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Table 4-3 Finance Data MSSW vs. Empirical Heuristics 

Heuristic Used Middle Layer 
Mean 

Training 
Accuracy 

Std. 
Dev. 

Mean 
Validation 
Accuracy 

Std Dev. 
Average # 
Training 
Epochs 

Kolmogorov 15 1 0 0.9667 0.0745 2500 

Lippmann 5 1 0 0.9667 0.0703 2500 

Zhang (LB) 6 1 0 0.8500 0.1657 2500 

Zhang (UB) 15 1 0 0.9667 0.0745 2500 

Daqi and Shouyi 7 1 0 0.9667 0.0703 2500 

MSSW 4 0.97895 0.067 0.8333 0.1571 2500 

 

The results in Table 4-3 are based on ten replications for each setting of the network.  The 

results follow the conclusion after analyzing Figure 4-6.  The MSSW method provides an 

effective structure, but not the optimal structure.  The larger variance in validation 

accuracy between runs shows that there are times when the MSSW method works just as 

well as the other heuristics and there are times when it underperforms them. 

4.2.4. Hot Dog Data Set 

The next data set used is a hot dog data set.  The data set contains 54 different hot 

dog brands which are made of three different meats (20 Beef, 17 “Meat”, & 17 Poultry).   

The data set containing the following features:  

• $/oz 
• $/lb protein 
• Calories 
• Sodium 
• Protein/fat. 

The goal of the neural network used is to predict the correct meat for each hot dog brand 

based on the above variables.  The network used for the data has a structure of 5 input 

neurons and 3 output neurons.  Additional information about training:   

• 5 replications of each network size are trained  
• Each network is trained for 2000 training epochs  
• 75% of the data is used as training data and 25% is withheld as validation data 
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• Step size (η), or learning rate, of .01 is used 
• Lower layer and upper layer weights are initialized randomly between [-.1, .1]    

 

  

Figure 4-7 Hot Dog MSSW 

The chart shown in Figure 4-7 shows that the maximum value of MSSW, which would 

terminate the proposed algorithm, occurs with 2 middle layer neurons.   
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Figure 4-8 Hot Dog Accuracy 

Figure 4-8 reveals that a network with 2 middle layer neurons works very well.  The 

training accuracy is worse than any network structure with more than 2 middle layer 

neurons, while the average validation accuracy is the highest of any structure tested.  

The result achieved using the MSSW method is compared to other empirical heuristics in 

Table 4-4.  
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Table 4-4 Hot Dog MSSW vs. Empirical Heuristics 

Heuristic Used 
Middle Layer 

Neurons 
Mean Train 

Accuracy 
Std. Dev. 

Mean Val 
Accuracy 

Std. Dev. 
Average # 
Training 
Epochs 

Kolmogorov 11 0.9878 0.0172 0.6385 0.0519 2000 

Lippmann 4 0.8268 0.0138 0.6769 0.0324 2000 

Zhang (LB) 5 0.8268 0.0214 0.6846 0.0243 2000 

Zhang (UB) 14 0.9780 0.0268 0.6538 0.1042 2000 

Daqi and Shouyi 6 0.8317 0.0077 0.7000 0.0243 2000 

MSSW 2 0.7756 0.0154 0.7462 0.0372 2000 

 

The MSSW method performs better than any of the other heuristics tested.  The method 

provides the highest validation accuracy and the lowest training accuracy.   

4.2.5. Summary 

This section applied the MSSW method to determine a successful lower bound for 

the middle layer of a neural network structure.  The algorithm is used on four different 

data sets and proved successful in each case.  Sometimes it appears that not only was the 

resulting middle layer structure an efficient baseline, but also optimal.   

4.3.Sufficiently Training a Neural Network   

4.3.1.  Introduction 

This section implements the proposed Threshold stopping criterion from section 

3.3.  The new method and other heuristics are applied to three different data sets.  The 

structure used for each of the networks was recommended by the results from section 4.2.  

Using prior work to determine a successful structure is necessary so there is knowledge 

that training will eventually lead to an effective neural network.  In section 4.5, the 

methods from 4.2 and this section are combined. 
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4.3.2.  XOR Data Set/Discussion of Data Analysis 

To first analyze the idea of terminating training, the XOR Data Set used in section 

4.2.1 is evaluated.  Again, the data set contains two inputs: an x and y coordinate.  Any 

coordinate lying in the upper right or lower left quadrants of the x, y plane are considered 

to be in one class and the coordinates in the upper left and lower right quadrants are in 

another class.  The following setup was used: 

• 150 data points with x,y values generated from Unifrand(-1,1) 
• 75% used for training (113) 
• 25% used for validation (37) 
• Network Structure: 2 Input Nodes, 3 Middle Layer Nodes, 2 Output Nodes 
• 5500 Training Epochs 
• 10 Runs (individual training of a network) 
• Step size of .01 
• Lower layer weights are initialized randomly between [-.01,.01] 
• Upper layer weights are initialized randomly between [-.1, .1]    

5500 training epochs are used, because after experimenting with the generalization loss 

heuristic, this seems like a good termination point.  Section 4.2.1 displayed that 

successful classification can occur with less epochs.  However, training past 5000 epochs 

could reveal there is room for improvement or maybe the network is already overtraining.  

The first step in analyzing the weights was to simply plot them for a single run and 

observe their activity.  Figure 4-9 contains a plot of the weights over the course of 

training for a single run.   
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Figure 4-9 XOR Data Weight Values 

The weights are labeled with their middle node of origin to the output node (i.e. 

middle nodes are A,B, &C and outputs are 1&2).  Figure 4-9 reveals that the weights do 

not actually stabilize, but instead continually head in their respective directions.  The 

activity of the weights brought forth the idea of looking at the sum of the weights over 

the course of training.  For a given epoch, the sum of the weights would be calculated as 

follows:   

   

       

Where ( )i
j kw  is a weight from middle layer node j to upper layer node i during epoch k.  

This is plotted vs. the number of training epochs throughout the process of training. 

( )i
j k

i j
w∑∑
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Figure 4-10 XOR Data Sum of Weights 

Figure 4-10 shows the total sum of weights for all 10 runs of the network.  There appears 

to be a lot of variation/volatility between 500 and 2500 training epochs, before the data 

all tends towards zero.   

 

Figure 4-11 Average Sum of Weights 
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Figure 4-11 displays an average (across 10 replications) of the total sum of weights over 

the course of training.  It should be noted that graph is more zoomed in on the y-axis than 

Figure 4-10 to better visualize the movement of the average throughout the training 

process.  Unlike this problem, the sum of upper layer weights does not always tend 

towards zero, so the average will not always “converge” to the x-axis as it does in this 

problem.  With this in mind, the change in the total sum of weights during the training 

process could provide insight regarding the termination of training.  This incremental 

change can be calculated using the formula presented in 3.3.2: 

1( ) ( ) 2,...,5500i i
k j k j k

i j i j
inc w w k−= − ∀ =∑∑ ∑∑

 

 
Again, ( )i

j kw  is a weight from middle layer node j to upper layer node i during epoch k.  

 

Figure 4-12 XOR Incremental Weight Change 

Figure 4-12 is a plot of the incremental change in the total sum of weights across 

training epochs.  Only the first 700 training epochs are shown, because the increments 
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simply tend closer to zero for the remainder of training.  It appears around training epoch 

125 that the incremental change is reasonably small.  The results of the network’s ability 

to classify the data at this point are listed in Table 4-5: 

Table 4-5 XOR Data Visual Incremental Truncation Accuracy 

Results 

Train. Accuracy Val. Accuracy 

.5575 .5405 

 

The results in Table 4-5 are the average across all 10 runs of the network.  The network is 

slightly more accurate than a random guess, which is evidence that the network is 

undertrained at this point.  Moving forward, the thought was to observe the percentage 

change in the sum of weights across training epochs.  This is calculated as:  

1

1

( ) ( )
% 100* 2,...,5500

( )

i i
j k j k

i j i j
k i

j k
i j

w w
CHNG k

w

−

−

−
= ∀ =

∑∑ ∑∑
∑∑  

The absolute value of the percentage change is used, because the direction of change is 

not of interest.  
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Figure 4-13 XOR Data %CHNG 

Figure 4-13 contains a plot of the percentage change over the course of training 

for each rep individually (left) and a moving average (right).  It appears that near training 

epoch 3000 all of the replications change close to the same amount for the remainder of 

training. 

 Welch’s idea of visually choosing a point where data “converges” on a moving 

average graph can be applied to the upper layer weights of a neural network (Welch, 

1981).  Instead of choosing a point where the data becomes “steady-state”, the point 

where the percentage change in the data substantially decreases in volatility is selected 

(3000 epochs).  This strategy will be referred to as Welch’s method for the remainder of 

this research. 

Table 4-6 contains the results of stopping training after 3000 training epochs as 

opposed to the full 5500 training epochs that were run initially.  After 3000 epochs, the 

network does a better job identifying validation data than at 5500 epochs, while not 

performing as well with the training data.  This shows that stopping training at 3000 
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training epochs is beneficial, because between 3000 and 5500 training epochs  the 

network is “over learning” the data.     

Next, the Threshold stopping criterion from section 3.3.4 is used: 

Table 4-6 XOR Data % CHNG Threshold Truncation Results 

Method  
Average # 
Training 
Epochs 

Mean 
Train. 

Accuracy 
Std. Dev. 

Mean 
Valid. 

Accuracy 
Std. Dev. 

Threshold 2243.6 0.8938 0.0661 0.9027 0.0808 

Welch 3000 0.9363 0.01 0.9189 0 

Full 5500 0.9646 0 0.8919 0 

Gen. Loss 5743.2 0.9646 0 0.8919 0 

 

The Threshold stopping criterion appears effective for this data set.  It requires the 

least training epochs and on average performs just as well as the other heuristics, but the 

results appear to be a bit less consistent.  It is interesting to note that the generalization 

loss heuristic and terminating training after 5500 epochs provide the exact same 

performance every time.   

4.3.3. Discussion of Truncation Heuristics 

Since all observed variations of the weights tend towards zero in the XOR 

problem, there appears to be no true “steady-state”.  However, using Welch’s idea of 

visually choosing a point where data “converges” on a moving average graph displays the 

ability to provide successful results.  Other heuristics for truncation which treat data as 

simulation output do not apply well, because they assume the data hovers around a true 

mean, which is not the case here.   Some of these heuristics include: SPC method, 

Randomization Test, Conway Rule, and the Crossing of the Means Rule.  For information 

on these and other heuristics, see Mahajan and Ingalls’ survey paper (Mahajan & Ingalls, 

2004).   
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4.3.4. Finance Data Set 

After achieving some level of success with the XOR data set, the Threshold 

stopping criterion and Welch’s method were applied to the Finance Industry data set used 

in 4.2.3.  Again, this data set contains financial information about 25 companies across 

three industries (14 pharmacies, 5 textiles, and 6 super markets).  There are seven input 

variables:  

• Rate of Return (ROR) 
• Debit/Equity Ratio (Deb/Eq) 
• Sales 
• Earning Per Share (EPS) 
• Net Performance Margin (NPM) 
• Price/Earnings Ratio (P/E) 
• Profitability 

 The goal of this problem is to separate the data into the 3 separate industries.  Other 

training information: 

• 75% of data used for training  
• 25% of data used for validation  
• 10 Runs (individual training of a network) 
• Step size of .01 
• Initial weight values randomly assigned between ±.1 
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Figure 4-14 Finance Data - Total Sum of Weights During Training 

Figure 4-14 displays the total sum of the weights during training for an individual 

replication of the network.  As was mentioned previously, these weights do not center on 

the x-axis or zero, but instead become more negative as training continues.   

 

Figure 4-15 Finance Data - Incremental Change in Sum of Weights 

Figure 4-15 is a plot of the incremental change of the sum of weights.  This is similar to 

the XOR problem, because the data tend towards zero at the end.   
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Figure 4-16 Finance Data - % Change in Sum of Weights 

Figure 4-16 displays the percent change in the total sum of weights during training.  The 

figure on the left has the values for all 10 runs plotted while the plot on the right has a 

moving average.  Using the reasoning from the XOR problem that the transient period 

ends when the percent change settles close to zero, this data becomes stable around 1000 

training epochs.  Table 4-7 reveals the method of visual data truncation is not as 

successful for this problem.  The proposed Threshold stopping criterion from 3.3.4 is also 

applied.  For this data set, the criterion for stopping training is met on average at training 

epoch 1545. 

Table 4-7 Finance Problem – Threshold Stopping Criterion Result 

Method 
Average # 
Training 
Epochs 

Mean 
Train. 

Accuracy 
Std. Dev. 

Mean 
Valid. 

Accuracy 
Std. Dev. 

Welch 1000 0.8263 0.1165 0.6833 0.1459 

Threshold 1545.3 0.8947 0.1265 0.8167 0.1657 

Full 4000 1 0 0.9 0.1491 

Gen. Loss 6812.5 0.9789 0.0666 0.8500 0.0946 

 

Table 4-7 displays the network performance at this point.  A generalization loss technique 

is also applied and proved to train much longer than expected.  The generalization loss 
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technique is run with α=1% and a max number of training epochs set at 7500.  The 

average validation accuracy for the threshold stopping criterion appears successful, but 

displays a lot of volatility.  The best truncation method appears to be stopping training at 

4000 epochs. 

4.3.5. Hot Dog Data Set 

The Threshold stopping criterion is now applied to the hot dog data set presented 

in section 4.2.4. The network used for the data has a structure of 5 input neurons, 6 

middle layer neurons, and 3 output neurons.  Other training information: 

• 75% of data used for training  
• 25% of data used for validation  
• 10 Runs (individual training of a network) 
• Step size of .01 
• Initial weight values randomly assigned between ±.1 
• Trained for 5500 training epochs  

 

 

Figure 4-17 Hot Dog Sum of Weights 

Figure 4-17 displays the percentage change in the total sum of the upper layer weights 

over the course of training.  The plot on the right contains the moving average for this 
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data.  The plot of individual runs has a zoomed in y-axis to display the initial volatility.  

The truncation point using Welch’s method is estimated at training epoch 800 and the 

Threshold stopping criterion terminates on average at training epoch 1490. 

Table 4-8 Hot Dog Data Training 

Method 
Average # 
Training 
Epochs  

Mean 
Train. 

Accuracy 
Std. Dev. 

Mean 
Valid. 

Accuracy 
Std. Dev. 

Welch 800 0.7537 0.0077 0.7846 0.0324 

Threshold 1210.7 0.7659 0.0126 0.7615 0.0243 

Gen. Loss 3607.1 0.8220 0.0231 0.6923 0.0000 

Full 5500 0.9195 0.0258 0.7308 0.0831 

 

Table 4-8 displays results of four different stopping criteria: Welch’s truncation, 

Threshold, generalization loss, and 5500 training epochs.  The generalization loss is run 

with an α=1%.  As the network trains longer, it fits the training data better.  It appears the 

validation accuracy decreases as training continues, which is expected.  Each method 

tested appears to provide some tradeoff between average validation accuracy, training 

time, and volatility of results.  Generalization loss provides the most consistent results, 

but the extension of Welch’s method appears to provide the best overall results.   

4.3.6. Body Fat Data Set 

The truncation methods are applied to the body fat data set discussed in 4.2.2.  

Five separate trainings of the network determined by the MSSW method (3 middle 

nodes) are completed.  Figure 4-18 plots each run’s accuracy and %CHNG value against 

training epochs.    
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Figure 4-18 Body Fat Data %CHNG vs. Accuracy 

 In this example, the networks understand the data quickly.  It appears, the sooner 

the network finishes training the better.  The moving average of the %CHNG variable is 

visible in Figure 4-19.  
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Figure 4-19 Body Fat Data Moving Average 

The %CHNG value is quite volatile until about 2750 training epochs.  Welch’s 

method and other truncation method results are available in Table 4-9.  

Table 4-9 Body Fat Data Terminating Criterion 

 
Average # 

Training Epochs 
Mean Train. 

Accuracy 
Std. Dev. 

Mean Valid. 
Accuracy 

Std. Dev. 

Generalization Loss 1156.6 0.8720 0.0255 0.8032 0.0266 

Threshold 1783.6 0.8444 0.0080 0.7873 0.0080 

Welch  2500 0.9153 0.0179 0.7905 0.0325 

Full 5000 0.9407 0.0177 0.7651 0.0629 

 

It appears that the generalization loss method, using an α=1%, has the best performance.  

For the heuristics tested, it appears that shorter training periods provide better results.    
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4.3.7. Summary 

In summary, there is information to be gleaned from observing the upper layer 

weights during the training process of a neural network.  While training, the weights 

display a period of volatility before settling down.  The longer the network trains, the less 

the sum of the weights changes.  However, the weight values do not appear to settle at a 

mean value like output data in a mean value simulation.  Instead, as the number of 

training epochs increases, the sum of the weights changes in decreasing increments.  

Percent change in the sum of the weights decreases during training as well.  

The Threshold stopping criterion proposed in this research accounts for the initial 

volatility in the data and terminates training once the weights settle down.  Using this 

method resulted in some under training of the network on the finance data set and was 

successful on the other ones tested.  The generalization loss method was successful on all 

data sets, but on average required many more training epochs than the Threshold stopping 

criterion.  Using Welch’s method on the percent change in the sum of weights worked 

well on all but the finance data set.  The network undertrained when analyzing the 

finance data set.  It is probably a stretch to apply this heuristic to weight values, because 

they never truly settle down.  Also, the results are very subjective since the method is 

dependent on a visual observation of when the data settles down.  Due to the subjective 

nature of the Welch method results, the Threshold stopping criterion is the method of 

choice moving forward in the research. 
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4.4. Regression Equation for Stopping Training 

4.4.1. Introduction 

The goal in determining an efficient structure for a neural network is to decrease 

training time while still maintaining a network that generalizes well.  Many factors affect 

the number of epochs required to sufficiently train.  They include: number of exemplars, 

number of features, number of middle layer nodes, number of outputs, and the random 

nature of the back propagation algorithm.   In an attempt to predict the number of epochs 

required in training, a regression on two different values was run.   The two values of 

interest are: 

• Value of %CHNG when max validation accuracy during training occurs 
• Training epoch where max validation accuracy during training occurs  

The regressions were not successful, but the results are available in Appendix A. 

4.5.  Combining Methods 

4.5.1. Introduction 

The goal in combining the middle layer selection algorithm, SNR feature 

selection, and upper layer weight training is to create an efficient, accurate neural 

network structure.  Removing features and middle nodes decreases training time, while 

not necessarily decreasing the performance of the network.  This section will apply the 

proposed Combined method to four data sets.  The XOR data set is not included, because 

both features, the x and y coordinate, are essential to classifying data.  Using the 

combined method on the XOR data set results in the same network/results as the 

Threshold stopping criterion did in section 4.3.2. 
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Again, the Combined method is summarized below:  

Step 1: 
 Select Data 
Step 2: 

Implement middle layer selection algorithm (MSSW method) from section 3.2.  
Step 3: 
 Implement SNR feature selection method from 2.7.3. 
Step 4:  
 Stop. 

During the training of any/all network configuration(s), use the proposed Threshold 

stopping criterion from section 3.4. 

4.5.2. Metrics Used 

Validation Classification Error – This is calculated as (1 - validation classification 

accuracy) 

4.5.3. Fisher’s Iris Data Set 

Fisher’s iris data set is a widely used multivariate data set (Bauer, Alsing, & 

Greene, 2000).  This new data set is used to illustrate the combined method from start to 

finish without repeating information previously presented in this research.  The data set 

has 3 classes of iris flowers: setosa, versicolor, and virginica.  The data set contains four 

features:  sepal length, sepal width, petal length, and petal width. 

In order to execute the SNR method, a noise feature is also added to the data set.  

The noise feature is randomly generated from a uniform distribution between 0 and 1.  

The goal of this problem is to separate the data into the 3 separate classes.  Other training 

information: 

• 75% of data used for training  
• 25% of data used for validation  
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• 10 Runs (individual training of a network) 
• Step size of .01 
• Initial weight values randomly assigned between ±.1 
• Trained until Threshold stopping criterion is met 

Step 2:  Middle layer selection algorithm (MSSW method) 

 

Figure 4-20 Iris Data all Features 

For illustration’s sake, this problem is run with 1,2,3,4, and 5 middle neurons.  However, 

the MSSW middle layer algorithm would terminate at 2 middle neurons.  It is visible in 

the accuracy chart that this point is ideal.  However, 2 middle neurons provide an 

efficient baseline structure.   
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Step 3:  SNR Feature Selection 

 

Figure 4-21 Iris Data All Features- 2 Middle Neurons 

To start, the network is run 10 times with all features included.  Figure 4-21 

contains graphs of %CHNG and training accuracy through the course of training.  The 

majority of the runs appear to classify at approximately 95% accuracy, but two seem 

stuck in a local minimum.  Following the SNR feature selection algorithm, feature 1 is 

removed from the data set.   
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Figure 4-22 Iris Data- Feature 1 Removed 

Removing feature 1 appears to rid the network of the problem of getting stuck in a 

local minimum.  The SNR method recommends removing feature 2 for the next training 

epoch.  Results of 5 runs at this setting are available in Figure 4-23. 
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Figure 4-23 Iris Data- Feature 1&2 Removed 

Removing feature 2 leads to the slightly higher accuracy while some runs train for 

fewer epochs.  This improved the efficiency of the model.  The SNR method now calls 

for the removal of feature 3.   
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Figure 4-24 Iris Data- 1, 2& 3 Removed 

The results appear very similar to the results of the previous network structure.  

This shows that the data is essentially a single variable problem.  After removing the last 

feature, feature 4, there is a “significant” increase in the validation error.  The validation 

error during the SNR feature selection process is plotted in Figure 4-25.   
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Figure 4-25 Iris SNR Validation Error  

Feature 4, petal width, is the only salient feature, because there is a “significant” 

change in validation error when it is removed.   

Using only feature 4 and the noise feature as inputs, the MSSW middle layer 

algorithm is run again.  The results of the different feature sets used are summarized in 

Table 4-10. The selected feature set is shaded. 

Table 4-10 Combined Methods Summary – Iris Data 

 

0 Features 
Removed 

Feature 1 
Removed 

Features 1&2 
Removed 

Features 1,2,&3 
Removed 

All Features 
Removed 

Mean Val Acc 0.8919 0.9432 0.9703 0.9514 0.2595 

Mean Val Err 0.1081 0.0568 0.0297 0.0486 0.7405 

Std Dev 0.1147 0.0085 0.0085 0.0279 0.0587 

 

While not providing the best results, the recommended network has a smaller 

structure than the only network with better performance (network with features 1 & 2 

removed), while requiring less training time.   Overall, the combined method reduced the 

number of features from 4 to 1, while using only 2 middle layers neurons.  This is a 
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small, efficient network structure.   Yang and Honavar provide results for the Cascade 

Correlation method for the iris data set based on ten runs. 

Table 4-11 Cascade Correlation Method – Iris Data 

Mean Val Accuracy 0.926 

Std Dev Val Acc 0.014 

 

The combined method outperforms the results displayed in Table 4-11.  However, these 

results should be taken with a grain of salt, because Yang and Honavar do not specify 

how many data points were withheld for testing purposes (Yang & Honavar, 1991).   

4.5.4. Body Fat Data Set  

The combined method is now applied to the same body fat data set used in 

sections 4.2.2. and 4.3.6..  The following information is true for each network trained 

during the combined method:  

• 75% of data used for training  
• 25% of data used for validation  
• 10 Runs (individual training of a network) 
• Step size of .01 
• Initial weight values randomly assigned between ±.1 
• Trained until Threshold stopping criterion is met 

Applying the combined method results in the following: 

• Step 2 (MSSW method):  2 Middle Layer Neurons 
• Step 3 (SNR feature selection):  Remove all features but abdominal 

circumference  
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Figure 4-26 Body Fat Data – Combined Method 

Figure 4-26 displays the results of the combined method against other heuristics 

previously discussed in the literature.  In the figure, the validation accuracy is represented 

by the purple bars and the std. deviation by the teal bars.  The combined method provides 

the highest validation accuracy with the lowest standard deviation across separate 

network trainings.  The combined method clearly results in the model with the best 

generalizing ability.  Table 4-12 summarizes the same data and includes information 

regarding accuracy of training data. 

Table 4-12 Body Fat Data Combined Method vs. Other Heuristics 

Heuristic Used 
Middle 
Layer 

Mean Training 
Accuracy 

Std. Dev. 
Mean Validation 

Accuracy 
Std. Dev. 

Average # 
Training 
Epochs 

Kolmogorov 27 0.9881 0.009 0.7183 0.0456 5000 

Lippmann 6 0.9788 0.0106 0.7513 0.033 5000 

Zhang (LB) 7 0.9868 0.0068 0.7183 0.0456 5000 

Zhang (UB) 16 0.9947 0.0075 0.7579 0.0152 5000 

Daqi and Shouyi 9 0.9881 0.009 0.7381 0.0205 5000 

MSSW 3 0.9312 0.0106 0.7778 0.0449 5000 

MSSW + 
Threshold 

3 0.8995 0.0150 0.8016 0.0561 2212.5 

Combined 3 0.8095 0.0075 0.8175 0.0112 2216.5 
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4.5.5. Finance Data Set  

The combined method is now applied to the same financial industry data set used 

in sections 4.2.3 and 4.3.4.  The following information is true for each network trained 

during the combined method:  

• 75% of data used for training  
• 25% of data used for validation  
• 10 Runs (individual training of a network) 
• Step size of .01 
• Initial weight values randomly assigned between ±.1 
• Trained until Threshold stopping criterion is met 

Applying the combined method results in the following: 

• Step 2 (MSSW method):  4 Middle Layer Neurons 
• Step 3 (SNR feature selection):  Remove no features 

The resulting networks’ performances from step 2 are documented in Table 4-13. 
 

Table 4-13 Combined Methods Summary – Finance Data 

 
No Feature 
Removed 

Feature 3 
Removed 

Features 
3&7 

Removed 

Features 2,3 
& 7 

Removed 

Features 
1,2,3,&7 
Removed 

Features 
1,2,3,6 & 7   
Removed 

Features 
1,2,3,5,6 & 7 

All Features 
Removed 

Mean Valid. Acc 0.8833 0.75 0.85 0.7333 0.6833 0.5833 0.5333 0.5 

Mean Valid. Error 0.1167 0.25 0.15 0.2667 0.3167 0.4167 0.4667 0.5 

Std Dev. 0.1125 0.18 0.123 0.1405 0.123 0.1416 0.0703 0 

 

The network resulting from the combined method includes all features along with 4 

middle nodes.  Figure 4-27 compares the results of this network structure to the structure 

containing all features while executing the MSSW method, the Threshold stopping 

criterion (MSSW+Threshold), and other heuristics analyzed earlier in this research. 
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Figure 4-27 Finance Data – Combined Method vs. Other Heuristics 

Table 4-14 includes the same data as Figure 4-27 along with information about the 

training accuracy. 

Table 4-14 Combined Methods Comparison – Finance Data 

Heuristic Used Middle Layer 
Mean 

Training 
Accuracy 

Std. Dev. 
Mean 

Validation 
Accuracy 

Std. Dev. 
Average # 

Training Epochs 

Kolmogorov 15 1 0 0.9667 0.0745 2500 
Lippmann 5 1 0 0.9667 0.0703 2500 
Zhang (LB) 6 1 0 0.85 0.1657 2500 
Zhang (UB) 15 1 0 0.9667 0.0745 2500 

Daqi and Shouyi 7 1 0 0.9667 0.0703 2500 
MSSW 4 0.979 0.067 0.8333 0.1571 2500 

MSSW + Threshold 4 0.9526 0.1006 0.8833 0.1125 1636.1 
Combined Method 4 0.9526 0.1006 0.8833 0.1125 1636.1 

 

The results of the combined method appear successful; however, additional structure in 

the hidden layer improves the performance of the network.   

4.5.6. Hot Dog Data Set  

The combined method is now applied to the same hot dog data set used in 

sections 4.2.4 and 4.3.5.  Applying the combined method results in the following: 
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• Step 2 (MSSW method):  2 Middle Layer Neurons 
• Step 3 (SNR feature selection):  Remove features 5, 4, and 1 

Each network structure is run five times.  The resulting networks’ performances in Step 3 

are available in Table 4-15. 

Table 4-15 Combined Methods Summary – Hot Dog Data 

 
No Features 

Removed 
Feature 1 
Removed 

Features 5 
& 1 

Removed 

Features 5, 
4, & 1 

Removed 

Features 5, 
4, 3, & 1 

Removed 

All Features 
Removed 

Mean Valid.  Accuracy 0.6692 0.7077 0.7154 0.6846 0.6 0.4 

Mean Valid. Error 0.3308 0.2923 0.2846 0.3154 0.4 0.6 

Std Dev. 0.1954 0.1486 0.1778 0.0568 0.1135 0.0873 

 

The network structure with 2 middle layer neurons and only 2 features, $/lb protein and 

calories, is the structure chosen by the combined method.   

 

Figure 4-28 Hot Dog Data – Combined Method vs. Other Heuristics 

Figure 4-28 displays the results of the combined method against other heuristics 

tested thus far.  The MSSW method with a full 2000 epochs appears to have the highest 

average validation accuracy and close to the smallest variance.   
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Table 4-16 Combined Method vs. Other Heuristics – Hot Dog Data 

Heuristic Used Middle Layer 
Mean Training 

Accuracy 
Std. Dev. 

Mean 
Validation 
Accuracy 

Std. Dev. 
Average # 
Training 
Epochs 

Kolmogorov 11 0.9878 0.0172 0.6385 0.0519 2000 

Lippmann 4 0.8268 0.0138 0.6769 0.0324 2000 

Zhang (LB) 5 0.8268 0.0214 0.6846 0.0243 2000 

Zhang (UB) 14 0.978 0.0268 0.6538 0.1042 2000 

Daqi and Shouyi 6 0.8317 0.0077 0.7 0.0243 2000 

MSSW 2 0.7756 0.0154 0.7462 0.0372 2000 

MSSW + Threshold 2 0.7147 0.1281 0.6692 0.1954 1265.4 

Combined Method 2 0.6829 0.0736 0.6846 0.0568 1362.4 

 

Table 4-16 includes the data from Figure 4-28 along with information regarding 

the training data.  In the MSSW+Threshold stopping criterion, one of the ten replications 

yielded a validation accuracy of approximately .3 or 30%, which is the cause of the large 

validation accuracy variance. The advantage the combined method provides in decreased 

training epochs is countered by a decrease in validation accuracy.  The MSSW method 

with a full 2000 training epochs provides the best network performance.   

4.5.7. Summary  

The combined method was tested on the iris, body fat, financial industry, and hot 

dog data sets.  The networks resulting from the combined method have smaller structures 

than any other tested in this research.  In the instance of the body fat and iris data sets the 

network structure appears successful.  For the financial industry and hot dog data sets the 

performance results fall short of other methods tested.  However, the drop off in 

performance could be worth the decrease in training time required by a smaller network.  

For the small data sets tested in this research this is likely not the case, but for a larger 
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industrial data set, the tradeoff provided by the combined method could be more 

appealing. 

4.6.Generalized Ensemble Method 

4.6.1. Introduction 

The generalized ensemble method (GEM) is introduced in this research to fuse 

multiple network results together to improve overall performance.  In section 4.5 the 

combined method is applied to multiple data sets.  Volatility is present in these results 

due to the stochastic nature of the backpropagation algorithm.  Multiple networks are 

trained for each data set to display the variance of the results and provide insurance 

against the possibility of an individual run getting stuck in a local minimum during 

training.  It would be possible to simply throw out a poor performing network.  However, 

unsuccessful network trainings do not necessarily yield useless results.  Using this train 

of thought, GEM is applied in this research to combine information from multiple 

networks.  Further, GEM is proven to provide the best possible linear combination of a 

population of network’s results.    

4.6.2. GEM Application 

To apply the GEM method, five separate runs of the networks recommended by 

the combined method are trained for each data set.  The GEM method is then applied to 

combine the results of these five network trainings. 
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Table 4-17 GEM Application 

 
Combined Method Result GEM  

Data Set 
Avg. Validation 

Accuracy 
Std Dev.  

Validation 
Accuracy 

XOR  0.9027 0.0808 0.9189 

Body Fat 0.8175 0.0112 0.8254 

Finance 0.8833 0.1125 1 

Hot Dog  0.6846 0.0568 .6923  

Iris 0.9514 0.0279 0.973 

 

Table 4-17 displays the GEM validation accuracy is higher than the average of the 

combined method runs for all five data sets.  For each data set, the GEM results are close 

to if not the best results displayed thus far for any heuristic in this research. 
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5. Conclusion/Future Work 

5.1. Conclusion 

During this research, the analysis of upper layer weights in feed-forward neural 

networks led to a proposed method to choose a baseline structure (MSSW method), a 

proposed method to terminate training (Threshold stopping criterion), and an iterative 

process to arrive at an efficient neural network structure (Combined method).   

The motivation in analyzing the upper layer weights was to discover an optimal 

middle layer structure.  Unfortunately, the MSSW method is not always optimal.  With 

that said, neither are any of the heuristics tested in this research.  For the data sets tested, 

the MSSW method appears to provide a reliable baseline, or lower bound, for effective 

structure, and outperformed empirical heuristics more times than not. 

Observing the activity of the upper layer weights also led to the Threshold 

stopping criterion for terminating training.  This criterion does cut off the training 

prematurely at times, but this is partially due to the nature of feed forward neural 

networks.  The backpropagation gradient search algorithm can get stuck in local 

minimums when using smaller middle layer structures.   

Combining the MSSW method and the Threshold stopping criterion with SNR 

feature selection provides a decrease in training time.  However, the decrease in training 

time does come at a cost.  By removing “non-salient” features from the model, 

performance tends to decrease and become more volatile.  Taking this method one step 

further and applying the general ensemble method removes this volatility from the results 

and can yield even higher validation accuracy.           
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5.2. Future Work 

The current process of the MSSW method requires multiple trainings of each 

network size.  Conducting this process in a single training run, by adding hidden layer 

neurons during training, would decrease time to perform the MSSW method.   
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Appendix A. 

Regression for stopping criterion 

The two values of interest are: 

• Value of %CHNG when max validation accuracy during training occurs 
• Training epoch where max validation accuracy during training occurs  

These two values were recorded for multiple data sets and structures.  The different 

networks structures tested are listed in the table below.  

Regression Network Setups 

 Data Set Features 
Data Points 
(Exemplars) Lower Bound 

Upper 
Bound Outputs 

Finance 7 25 3 12 3 
XOR 2 150 3 7 2 

Hot Dog 5 54 2 10 3 
Body Fat 13 252 2 6 2 

Owl Problem 4 179 2 10 7 
 

For each data set, different sized middle layers are used.  The lower bound and 

upper bound columns correspond to the different sizes.  For example, the Finance Data 

set is trained separately with middle layers including: 3, 4, 5, 6… 12 middle layer 

neurons.  Five replicates of each setting are run.  Also, all network structure with only 1 

middle neuron and some with 2 middle neurons were removed, because these 

configurations did not lead to a successful neural network.  Successful implies that the 

validation accuracy be higher than a random guess.  Each network is trained to a point 

where overtraining is occurring.  For a given network, the validation accuracy of the 

network is recorded after each training epoch, so the max validation accuracy can be 

recorded. 
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% CHNG Regression Results 

When conducting the regression on the %CHNG value, a Box Cox transformation 

is utilized due to concerns over the residuals’ non-constant variance in the initial 

regression model. 

 

CHNG Regression Model 



80 
 

 

The output includes the ANOVA, R-Square values, and parameter estimates for 

the model.  The Adj. R-Square of .6808 seems promising.  There is a large amount of the 

variance in the %CHNG variable termination value accounted for by the model.    

However, the model is hard to interpret because the coefficients are very small.  It 

appears that the number of features and outputs decrease the %CHNG value to stop 

training while the number of middle nodes slightly increases it.  Interestingly, the number 

of data points did not appear significant in determining the number of training epochs.  

When trying to apply the results of this model to data used in this research, inverse 

prediction intervals on %CHNG include zero.  Also, the estimated value for %CHNG 

appears too conservative when using it in practice.  This essentially deems the results of 

this model ineffective.  The goal in conducting a regression is to provide an accurate 

estimate of when to stop training, but this falls short in that regard. 

Training Epoch Stopped Regression Results  

When conducting the regression on the %CHNG value, a Box Cox transformation 

is utilized due to concerns over the residuals’ non-constant variance in the initial 

regression model. 
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Training epoch Stopped Regression Model 

The output includes the ANOVA, R-Square values, and parameter estimates for 

the model.  The Adj. R-Square of .6741 shows there is a large amount of the variance in 
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the Training epoch Stopped variable accounted for by the model.   It appears that the 

number of middle and output nodes decrease training epochs, while the number of 

features and data points increases training epochs.  Interestingly, the number of data 

points did not appear significant in determining the number of training epochs.  When 

trying to apply the results of this model to data used in this research, the resulting values 

appear too conservative when used in practice.  Unfortunately, this regression is not as 

successful as initially hoped. 
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Appendix B. Blue Dart 

Artificial neural networks are a statistical tool patterned after the way a human 

central nervous system communicates.  They have the ability to classify and derive 

meaning from data without any previous knowledge of the context or origin of it.  This is 

important, because an increasingly technical world contains an abundance of separable 

data.  Neural networks are robust in their application and can discover patterns or trends 

that are unnoticeable to a human observer or other computer techniques.  These powerful 

tools can be used to do anything from classify pixels in an image to separate or better 

understand personnel data.   

This research provides new techniques to use when implementing neural networks 

to classify data.  The size of a neural network and the amount of time they are trained for 

can affect results.  The techniques presented in this work provide an efficient, structured 

process for obtaining effective results.  For data sets tested thus far, these methods yield 

efficient neural network structure in minimal training time.  Direct application of the 

techniques proposed in this paper can result in better understanding of information in less 

time.    

Applications of neural networks include terrain classification in aircraft, anomaly 

detection in image processing, and target tracking.  In all of these realms, decreased 

training time of the neural networks provides results in minimal time.  As computational 

power increases, the use of neural networks for real time analysis will be a powerful asset 

in data analysis. 
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Appendix C. Story Board 
Using Upper Layer Weights to Efficiently Construct and 

Train Feed-forward Neural Networks Executing 
Backpropagation

Research  Objectives: 
• Determine efficient network structure
• Determine an ideal training termination point
• Combine Methods to create an iterative process to construct neural 

networks  

Combined Method
2d Lt Harmon Gage
Department of Operational 

Sciences (ENS)
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Dr. Kenneth Bauer
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Dr. J.O. Miller
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Mean Sum of Squared Weights Method (MSSW)

For a middle layer structure 
containing I middle layer nodes 
and J upper layer nodes, the 
MSSW can be calculated as:

Generalized Ensemble Method 
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method to 
construct 

middle layer

With  middle 
structure set, 
remove non-

salient 
features 

using SNR 
method

MSSW Method Summary:  Determine number of middle 
layer nodes where max MSSW method occurs
MSSW Method Summary:  Determine number of middle 
layer nodes where max MSSW method occurs

Max MSSW value 
coincides with 
efficient network 
structure

For a training epoch k, the percent change in the sum of upper layer 
weights is observed:

Threshold Stopping Criteria:
Train for minimum of:
1. 1000 Epochs
2. Epoch where %CHNG is less than .025% for 50 consecutive training 

epochs

Stochastic nature of 
backpropagation algorithm 
yields varying results across 
multiple runs.  Generalized 
Ensemble Method fuses 
multiple runs to create best 
possible classifier.

The combined method integrates the MSSW 
method, Threshold Stopping Criteria, and Bauer, 
Alsing, & Greene’s SNR feature selection method.  
The result is an efficient network structure with 
successful performance.   

Conclusion

Combined Method Result GEM 

Data Set
Avg. Validation 

Accuracy (5 Runs)
Std Dev. 

Validation 
Accuracy

XOR 0.9027 0.0808 0.9189
Body Fat 0.8175 0.0112 0.8254
Finance 0.8833 0.1125 1
Hot Dog 0.6846 0.0568 .6923

Iris 0.9514 0.0279 0.973

Feedforward Neural Network:
“An important statistical tool for classification. They can adjust 

themselves to data without any prior knowledge of the input data.  
Can approximate any function with arbitrary accuracy. “ 
(Zhang G. P., 2000)

Threshold Stopping Criteria 

Q: Why use %CHNG observation?
A: As %CHNG settles, validation accuracy 
also settles

Data Set MSSW Threshold Combined GEM

XOR 
Body Fat Success
Finance Mild Success
Hot Dog No Success

Iris

Success- Efficient or Pareto-Optimal
Mild Success- Realistic trade off in structure size/epochs vs. performance
No Success- Unrealistic trade off in structure size/epochs vs. performance
*Results are compared to existing heuristics*
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